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ABSTRACT

I/O performance in large-scale HPC systems has failed to keep pace with improve-

ments in computational performance. This widening gap presents an opportunity

to introduce a new layer into the HPC environment that specifically targets this

divide.

A RAMDISK Storage Accelerator (RSA) is proposed; one that leverages the

high-throughput and decreasing cost of DRAM, while providing an application-

transparent method for pre-staging input data and committing results back to a

persistent disk storage system. The RSA is constructed from a set of individual

RSA nodes; each with large amounts of DRAM and a high-speed connection to the

storage network. Memory from each node is made available through a dynamically

constructed parallel filesystem to a compute job; data is then asynchronously staged

on to the RAMDISK ahead of compute job start, and written back out to the

persistent disk system after job completion.

The RAMDISK thus provides for very-high-speed, low-latency access that is

dedicated to a specific job; the asynchronous data staging frees the compute system

from time that would otherwise be spent waiting for file I/O to finish at the start

and end of execution.

To support this asynchronous data-staging model requires an method of schedul-

ing this new capability alongside that of the traditional task of scheduling com-

pute resource access for each job. A proof-of-concept implementation based on the

SLURM job scheduler is presented, and demonstrates an operational 16-node RSA

system connected to a 1024-node IBM Blue Gene/L.

This thesis presents a case in favor of this RAMDISK Storage Architecture

along with specific work done to implement a proof-of-concept system demonstrating

the feasibility of this mode of operation.

ix



CHAPTER 1

Introduction and Historical Review

1.1 I/O Performance in HPC Systems

Filesystem I/O performance in large-scale HPC systems has failed to keep pace

with improvements in computational performance [10, 27, 48, 51]. As HPC applica-

tions continue to evolve their datasets continue to grow linearly with computational

complexity and not with filesystem performance. This results in a decreasing amount

of the time needed to run a compute job spent on the actual computation, and an

increasing amount is spent waiting for I/O to finish [30]. As HPC systems continue

towards Exascale there is growing concern that the current approaches to obtain-

ing filesystem performance will not keep pace, and that new architectures will be

necessary [1, 2, 6, 12, 41, 49].

Figure 1.1 illustrates the growing divide. Moore’s Law predicts that CPU

performance will double every 18 months [44]. However I/O throughput for a single

Figure 1.1: The I/O Gap — CPU Performance Versus Disk Throughput
Over Time
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disk has only doubled once every 10 years or so [18]. As HPC systems continue to

evolve disk throughput will continue to lag behind unless an exponentially-growing

number of disk drives are added to the storage systems, or a radically different

approach to disk storage systems is taken.

We believe that an opportunity exists to introduce a new system layer —

one that is able to decouple the disk storage system from the compute system,

while behaving in a method that is application-independent and transparent. The

proposed solution is the introduction of a new component to the HPC systems

architecture — the RAMDISK Storage Accelerator (RSA).

By aggregating the DRAM available in a number of commodity servers, each

referred to as RSA nodes, a RAMDISK can be constructed using a parallel filesystem

such as Ceph [52], PVFS [28], GPFS [45] or Lustre [8]. This parallel RAMDISK can

be presented to the compute system as if it were a traditional disk-backed filesystem.

The RAMDISK thus provides for very-high-speed, low-latency access to temporary

storage that is dedicated to a specific compute job. By asynchronously constructing

the RAMDISK ahead of the start of the job execution, data is staged-in and ready

to be quickly accessed at a much higher speed when the job begins. Similarly, by

outputting data to the RAMDISK and waiting until after job execution finishes to

asynchronously stage-out data to the disk storage system, the compute system is

released and able to begin executing a separate job faster — freeing the system from

from time that would otherwise be spent waiting for file I/O to finish.

The RSA Scheduler is introduced to implement this asynchronous staging

and manage the RSA nodes. It is tasked with anticipating when the next job

will start, dynamically allocating RSA nodes to the job and provisioning a parallel

RAMDISK filesystem on top of it, staging data in and out from the RAMDISK,

and releasing resources after the data staging out step completes. These mechanisms

are transparent to the application itself — no modifications need to be made to the

application to take advantage of the RSA.

A proof-of-concept implementation of this RSA Scheduler is discussed and

demonstrated in operation as a proof-of-concept system. It uses currently available

systems on the RPI campus — a 1024-node IBM Blue Gene/L and an HPC cluster
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acting as a 16-node RAMDISK Storage Accelerator.

1.2 Historical Review

The use of DRAM as a caching layer for filesystem access is well established.

There has been a growing interest in methods of accelerating application storage,

especially databases and key-value stores, through use of applications designed to

operate exclusively in-memory. In particular the introduction of memcached [16] to

the web application community has been met with favorable results. Memcached is

a key-value store implemented exclusively in memory, designed for high-speed data

caching. Applications are then expected to implement their own persistent storage

model on top of this, generally committing data back to disk storage systems on

demand. This works especially well in read-intensive environments.

The introduction of Solid-State Disks (SSDs) to the HPC environment has also

provided an alternative method of accelerating storage [3, 10, 23]. SSDs provide

considerably higher throughput and much better random I/O performance than

traditional hard disks. In particular, they have been successfully applied towards

small-file storage systems. Filesystem metadata has received specific attention as it

has been a major bottleneck in large-scale systems [3, 20, 27, 54], and SSDs provide a

direct cost-effective improvement there. The trade-off is in their substantially higher

cost — the Petabyte storage systems that accompany current leadership-class HPC

systems would be prohibitively expensive to implement on current SSD technology

[23]. Even so, the Gordon / Dash system explores the use of SSDs to accelerate

specific data-intensive applications [23, 34] for specific workloads. One result of

shows a comparison between in-memory performance (similar to our RAMDISKs),

SSDs and disks, but does not extend the result to the potential for a dedicated

system such as in the RSA.

A recent development using DRAM to provide a parallel filesystem entitled

RAMCloud [37] first appeared in 2009. The RAMCloud implementation is designed

to hold all filesystem data in memory, and commits a copy of the data to storage

on-demand. A key divergence between RAMCloud and the proposed RSA is that

RAMCloud, by design, provides a dedicated persistent filesystem. It accomplishes
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this by committing data written back to underlying disk storage on each node and re-

building each node by reading data back into DRAM if the node has been restarted.

The RAMDISK approach used by the RSA intentionally discards data on restart,

and requires an explicit commit step to move data back to a persistent storage

layer. The RSA approach is meant to supplement persistent storage; the RAMCloud

approach intends to replace it wholesale and relies on relatively small amounts of

disk storage for persistence. Additionally, the RAMCloud approach is implemented

as a key-value store similar to memcached, while the RAMDISK in the RSA is

implemented using a conventional parallel filesystem, PVFS [28], and can be used

by current HPC applications without modification.

Asynchronous data staging, in a similar manner to what is implemented for

the RSA, is also discussed in relation to different classes of disk storage as the Zest

system [35]. In this model, data is written to an accelerated disk storage layer

that directly pushes data back to a larger persistent storage layer and acts as an

accelerated buffer, rather than the dedicated cache model of the RSA. Buffering

mechanisms have also been discussed at the I/O node level on a Blue Gene/P

system by using I/O node DRAM to provide temporary asynchronous file storage,

and allow the compute nodes in the machine to continue job execution while data

is committed back to primary storage [51]. The Maxperf system would provide a

mechanism to allocate cache space on the filesystem storage servers themselves to

specific jobs on demand [39]. The DataStager system would provide a dynamic data

staging platform using dedicated DataStager servers that share some similarities

with the RSA nodes presented here [1]. However, that system relies on application

modification to offload the I/O duties to the DataStager systems, whereas the RSA

presents a standard POSIX file interface. IOFSL [36] and ZOID [24] provide another

approach to I/O acceleration by relying on internal modifications to the I/O nodes

in large-scale compute systems to provide small-file I/O aggregation and a faster

path back to the parallel filesystem.

The Scalable Checkpoint/Restart library provides another method of accelerat-

ing I/O on large-scale systems, especially Blue Gene systems [32]. By using storage

available directly to each I/O node, in the form of SSDs, disk or RAMDISKs, it
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is able to provide higher-speed short-term caching of checkpoint data. The library

is meant to operate independently of the primary storage, unlike the RSA, and is

meant for checkpoint data only, not end results. Additionally, by using the I/O

nodes in the system, data still must be transferred back to persistent storage before

the compute system can be released for the next job.



CHAPTER 2

RAMDISK Storage Accelerator Architecture

2.1 Design of the RAMDISK Storage Accelerator

The RAMDISK Storage Accelerator is constructed from a dedicated cluster

of high-memory servers. RSA nodes are dynamically allocated to jobs prior to job

execution on the compute system and a parallel RAMDISK is constructed. Jobs

are able to stage-in data to the RAMDISK before the job will begin execution on

the compute system. Once execution begins the job is able to access data from

the RAMDISK at a much higher speed than it would out of the persistent disk

storage systems. Later on the job is able to make use of the RAMDISK again to

write results data. Once data has been written to the RAMDISK the job is able

to release its allocation on the compute system, and the RSA will stage data out of

the RAMDISK back to persistent storage asynchronously.

A critical factor of the design is the asynchronous data-staging that the RSA

nodes perform. To accomplish this, at any given time half of the I/O nodes should be

expected to be serving active compute jobs, while the other half are either staging

data in to a RAMDISK for a job that has yet to start or staging data back out

for a job that has finished execution on the compute system. Figure 2.1 shows an

idealized scenario demonstrating this capability. In this figure the compute system is

continuously occupied by running jobs — jobs that are able to take advantage of the

high-speed I/O provided by the RAMDISK — while the RSA nodes handle staging

data in and out of the system asynchronously. The fourth column shows how the

same jobs would behave without the advantages of the RSA, while the underlying

computation steps take the same amount of time, the increased time spent reading

data in and writing results out is shown and reflects a decreased throughput for the

compute system.

Before a scheduled job is run on the compute cluster, a segment of the RSA

is allocated for that job in proportion to the requested compute system size and a

RAMDISK is freshly created on the allocated nodes using a parallel filesystem. The

6



7

Figure 2.1: Simplified and idealized RSA Scheduler logic, showing an
ideal schedule for a series of full-compute-system jobs running alongside
the RSA, as well as the same system running without the RSA. The time
dimension is shown heavily compressed and unscaled to demonstrate the
behavior, no specific performance improvement is implied here.
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parallel filesystem allows us to aggregate the DRAM available on each individual

node into a single parallel RAMDISK. Data needed for the job is then staged in to

the RAMDISK. As this is happening asynchronously from job execution, this can

occur at a much lower rate than would be traditionally required on the compute

system itself.

Once the job starts, execution on the compute system can read its data in from

the RSA at a much higher speed than it would from the disk storage. Once this has

completed, the RSA is able to discard the data (as it remains in the persistent disk

storage system) and reset itself to prepare to receive data output from the compute

system.

This reset occurs in the background without impacting the compute job. Once

the transition has completed the now-empty RAMDISK can then be leveraged mid-

execution for job snapshots and at the end of computation to write results out.

After the job has written its results out to the RSA and completed execution the

compute system, it is then free to start the next job — it does not need to sit idle,

waiting for data to be pushed out to disk storage.

The RSA is then used to stage data back to the disk storage system. As

with the initial data staged in at the job start, the performance of the disk storage

system no longer directly impacts the throughput of the compute system itself.

Additionally, an extended mode of operation permits the compute job to perform

some data consolidation or post-processing independently of the main compute job.

As an example, supposing the application wrote its results out to several thousand

small files1. These many small files could then be aggregated to a single file on the

disk storage system instead. This addresses a recurring metadata performance issue

in many HPC filesystems [3, 7, 54].

An additional advantage of this structure is that the I/O performance of the

RSA scales linearly with compute job size — a task that is currently infeasible

in traditional disk storage systems2. Traditionally all compute jobs, outside file

1A common occurrence with application codes that write one results file per compute thread
[35, 38]. As one example, the PHASTA [42] computational fluid-dynamics code is usually run this
way [21].

2A proposed system — Maxperf [39] — would provide a mechanism to allocate storage server
cache to allow some control of this.
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transfer processes, visualization systems and similar auxiliary services contend for

access to the HPC center’s filesystem, and complex interactions can severely reduce

the overall performance [30, 54]. Additionally, no major parallel filesystems currently

provide quality-of-service methods that would allow administrators to control these

interactions between systems contending for access3. Generally, the only mediator

is the relative network speeds of the various systems competing for access to the

storage network.

Instead, the RSA nodes are directly allocated to the job which prevents con-

tention for the throughput each RSA node can provide4. Additionally, as RSA

nodes are allocated in direct proportion to job size5 there is a linear scaling between

capacity and I/O performance of the RSA for each job, something that disk storage

systems cannot currently provide.

2.2 RAMDISK filesystem

A parallel filesystem is used to construct the RAMDISK itself, allowing the

aggregated memory of each RSA node to be made available to the I/O nodes in the

compute system in a unified manner. Several options exist for this such as Ceph

[52], Lustre [8], PVFS [28], or GPFS [45].

For this proof-of-concept implementation PVFS is used. While PVFS, Lustre,

and GPFS are all currently usable on Blue Gene/L systems, PVFS has one advantage

that led to its selection. Specifically, the storage server processes run entirely in

user space on each RSA node and does not require custom Linux kernel modules to

operate. This makes dynamically creating and destroying the RAMDISKs simpler

and more reliable as the storage processes can be easily stopped. Since GPFS and

Lustre both run through custom kernel modules, RAMDISKs implemented in either

would be difficult to quickly destroy and rebuild6.

3Neither Lustre, GPFS, PVFS, or Ceph provide such a mechanism at present.
4This assumes no underlying bottleneck in the HPC center’s interconnect.
5An extension to the RSA could provide additional RSA nodes to I/O intensive compute jobs

on request, instead of relying on a directly proportion between compute nodes and the number of
allocated RSA nodes.

6Notably, rapid creation and destruction of the filesystem is not usually a design consideration
for most filesystems.
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On each RSA node a single RAMDISK is created through use of the Linux rd

pseudo-block device. At boot time the kernel module is loaded by adding a line to

the /etc/modules file of:

rd rd size=31457280 rd nr=1

This creates a single 30GB RAMDISK on the node that is available as the

/dev/ram0 block device7. This block device can be used with any filesystem. The

RSA dynamically formats it with the ext2 filesystem, and then PVFS will run

on top of that. PVFS is an object-storage based filesystem and does not directly

handle storing data on an underlying block device. Instead, it relies on a separate

local filesystem for this — in this case ext2. The ext2 filesystem was chosen for its

high performance and simplicity; newer filesystems such as btrfs and ext4 would

also work, but present no advantages to the RAMDISK implementation8.

Some care is taken to dynamically aggregate these RSA nodes together and

create the RAMDISK for each job. A program provided with PVFS is used to

dynamically create the PVFS configuration file used. Appendix Q is the script used

to dynamically construct the PVFS configuration file, the script in Appendix D is

used to start PVFS on the RSA nodes, and finally the script in Appendix E destroys

the PVFS process on each of the RSA nodes.

7The nodes used in the proof-of-concept system each have 32GB of DRAM, the module leaves
a 2GB space for the operating system. RAMDISK space is taken directly from the Linux memory
manager, and cannot be paged out to swap space. If sufficient space was not left for the operating
system it would result in increased use of swap space (slowing down the system waiting on hard
disk I/O), and eventually lead to an out-of-memory condition that would crash the RSA node.

8Most improvement with these filesystems relates to filesystem integrity through the use of
journaling and copy-on-write semantics. The RAMDISK is volatile and would not survive a system
restart, so these features would only result in additional overhead for the RAMDISK.



CHAPTER 3

SLURM and the RSA Scheduler

This chapter addresses specific challenges in adapting a common HPC scheduler —

SLURM — to managing this proposed RSA system.

For our RAMDISK Storage Accelerator to work efficiently certain stages in a

job’s lifecycle — including job submission, job execution on the compute system,

and cleanup — must be identified by the RSA management system. There are four

distinct stages a job can move through that must be handled: on-deck, demoted,

running and finished. Transitions between these job-states are shown in Figure

3.1. The RSA Scheduler is constructed to coordinate these stages to ensure a seam-

less job execution environment. It is implemented alongside the SLURM scheduler;

the SLURM scheduler is tasked with managing access to the compute system, and

job status is then tracked through SLURM’s APIs.

For on-deck jobs — jobs that are anticipated as being the next to start exe-

cution on the compute system — the scheduler must:

• Identify the next pending job on the system that will require RSA resources.

Figure 3.1: Job State changes, showing all possible job-state transitions.
Dotted lines are unlikely state transitions.

(No State in RSA Scheduler)

On-Deck

Running

Finished

Demoted

11
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• Allocate an appropriate portion of the RSA cluster to that job, and dynami-

cally construct a parallel RAMDISK on the RSA nodes.

• Stage data in to the new RAMDISK.

Additionally, a state of demoted exists for jobs that were in the on-deck state,

but have been preempted by a higher-priority job in SLURM. For these demoted

jobs the scheduler must:

• Stop the data staging process, if it is still executing.

• Tear down the RAMDISK, if one was constructed.

• Release the RSA resources the job held, so that they can be used by other

jobs in the on-deck state.

For jobs that are running on the compute system, the RAMDISK must be

mounted on the I/O nodes before the computation starts. Then, at some point

during execution9 the scheduler will switch the RAMDISK from providing space for

input files to providing space for intermediate checkpoints and results. It accom-

plishes this by:

• Unmounting the RAMDISK from the I/O nodes, and destroying the current

RAMDISK10.

• Constructing a new RAMDISK on the same RSA nodes.

• Mounting the new RAMDISK on the I/O nodes.

After the job has finished on the compute system, the RSA Scheduler needs

to:

• Stage data back to the disk storage systems. Or, optionally run a user-provided

post-processing script.

10This step will not complete if there are still files open by the compute system on the RAMDISK.
In this case the RSA will stay in this state until job completion, and will not be used to state data-
out. Input files must be closed or located outside of the data stage-in directory for this transition
to happen.

10This occurs after RSA DELAY seconds of job execution, and may be specified in the job script
file, or given a default value by the RSA Scheduler.
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• Destroy the RAMDISK used by the process and release the RSA nodes back

to the scheduler.

3.1 The SLURM Scheduler

The Simple Linux Utility for Resource Management (SLURM ) scheduler is

the HPC scheduler used for our initial proof-of-concept system.

SLURM [55] was originally developed at Lawrence Livermore National Labs

and is specifically designed to address issues with job scheduling for large-scale

HPC systems. In particular, it provides specific support for the IBM Blue Gene

systems and is able to provide dynamic system management on that platform. As

our intended target for the full-scale RSA system is the IBM Blue Gene/Q, and

SLURM is already providing preliminary support for these yet-unreleased systems

[25], it is the best choice for the proof-of-concept system.

SLURM provides for two main modes of job scheduling. The first mode is a

traditional batch scheduler with weighted job priorities. Jobs are assigned priority

values based on certain variables including job size, requested run time, user priority,

time the job has spent waiting in the queue, and administratively defined job quality-

of-service settings. The job with the highest priority is then run as soon as sufficient

resources are available.

The second mode of operation is backfill scheduling. In this mode, jobs with

the highest priority are tentatively scheduled to run at the earliest opportunity,

same as in the batch scheduling mode. If there is a period of time that a number

of compute nodes would be idle, while a large job is waiting for sufficient resources

to be released, smaller jobs are backfilled in to run immediately as long as the

predicted start time for the highest priority job is not delayed excessively. As the

backfill scheduler is designed to keep the system running at a higher average usage,

and the underlying goal with the RSA is to maximize the overall compute-system

usage, it was selected for the proof-of-concept system.
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3.2 Job Flow and the RSA Scheduler

This section describes the specific implementation work done for the proof-of-

concept system and each step taken to allocate resources to each job.

3.2.1 RSA Setup and Data Staging In

One of the difficult steps faced by the RSA Scheduler is to determine which job

is likely to start execution next on the compute system. In a production environment

jobs will be continually added to the SLURM job queues, and job priorities will be

constantly reassessed based on the scheduler’s internal state11, and jobs may be

canceled or updated at any time by the system users. This dynamic scheduling

environment presents a significant challenge on its own.

The implementation relies on SLURM to handle this task. The goal of the

RSA Scheduler is not to re-implement a production HPC job scheduler, but rather

to add an additional level of capabilities to the compute system it manages. The

scheduling information required by the RSA is limited to knowing when jobs start

and finish, and determining which jobs are likely to start execution next. This

determination drives the initial RSA setup for a job, and kicks off the data stage-

in process. SLURM is relied on to make this determination; the RSA Scheduler

learns the results by monitoring the job-state for each pending job through APIs

to SLURM.

Pending jobs fall in two main categories in SLURM:

• Pending on job priority, internally denoted as a job-state of PRIORITY, where

there are higher priority jobs waiting ahead of us.

• Pending on resources, job-state of RESOURCES, where the job is waiting for

sufficient free compute resources to begin execution.

Note that jobs can fluidly move between these job-states based on newly

submitted jobs and other factors; the RSA scheduling must react in the event of

these changes and reallocate the RSA resources to match these revised scheduling

11SLURM has a set of powerful capabilities to dynamically manage job priorities [26]. These
capabilities can cause job priorities to change at any time, and affect which job is chosen to begin
execution next.
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decisions. Thus, the implementation distinguishes between jobs that are on-deck

— those next in line to begin execution on the compute system — and demoted —

jobs that were previously on-deck but no longer are.

Once the scheduler has found a new job that has changed to the RESOURCES

state work preparing the RAMDISK begins. The job is now considered to be

on-deck by the RSA Scheduler, and a set of RSA nodes is allocated to the job

in proportion to the number of compute nodes requested. A fixed ratio of compute

nodes to each RSA node is used here and is adjusted to match the system scale.

The allocated RSA nodes are removed from the list of free nodes and marked in

the scheduler’s state files as belonging to that job. If the required number of RSA

nodes is not available the job is skipped over in the current scheduling iteration.

The expectation is that a later pass of the RSA Scheduler will be able to allocate

nodes before the job begins execution. The rsa-state transitions for on-deck jobs

are shown in Figure 3.2.

A separate process is then started12 to take the allocated nodes and construct

the parallel RAMDISK for use with the job. Once this step completes and the RSA

is marked as being ready for use, the next RSA Scheduler iteration will start the

data stage-in process.

Once the job data has been successfully staged in, the RSA Scheduler can

attempt to lock-in the job scheduled and prevent it from being preempted. This is

accomplished by setting a quality-of-service flag for the job in SLURM, making it

highly unlikely that SLURM would demote this job and force us to tear-down the

RSA and reallocate it.

Before the job has started on the compute system it may be rescheduled, and

the RSA allocation would then need to be revoked. This demoted job is defined as

any job changing status in SLURM from pending waiting on RESOURCES to pending

waiting on PRIORITY. Once a job has been demoted the data staging process is

stopped, the associated RAMDISK is destroyed and the allocated RSA nodes are

released. State transitions for this state are shown in Figure 3.3. Note that in all of

these state transition diagrams the rsa-state may have been set by the scheduler

12Appendix D — rsa-construct.sh
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Figure 3.2: RSA state change diagram for On-Deck jobs. For this figure,
and the next three, the boxed nodes denote the ideal starting and ending
states, and the dashed lines indicate state transitions that are triggered
by external call-outs.

(no state)

INITIAL call try-to-assign-nodes.sh

ASSIGNED

RSA nodes assigned

INELIGIBLE

job not requesting RSA assistance

BOOTING

call rsa-construct.sh

wait for boot to finish

BOOTED

finished

STAGING_IN

call rsa-stage-in.sh

wait for stage in to finish

READY

finished

in a different job-state, and these transitions must be handled properly in the

current rsa-state.

There is a further complication — it is possible that a job would jump from

pending on RESOURCES to RUNNING on the compute system before the data stage-in

process has completed. In this case, rather than delay the start of job execution

until the stage-in completes, the RAMDISK is instead ignored and the job will read

data in directly from the disk filesystem. It is expected in this case that the time

taken to complete staging data in to the RAMDISK would be approximately the

same as that necessary to read it directly from the compute system itself, and thus,

the RSA is ignored for the sake of expediency13.

13A further extension to the RSA Scheduler would add an option for the job to control this
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Figure 3.3: RSA state change diagram for Demoted jobs.

(no state)

INELIGIBLE INITIAL

TEARDOWN wait for deconstruct to finish

READY

call rsa-deconstruct.sh

DESTROYED

finished

release allocated RSA nodes

BOOTING wait for boot to finish

BOOTED

finished

call rsa-deconstruct.sh

ABORTED

call rsa-deconstruct.sh

STAGING_IN

STOPPING_STAGE_IN

call rsa-stop-stage-in.sh

finished

wait for stop to finish

ASSIGNED

release allocated RSA nodes

3.2.2 Job Execution

If the RSA has successfully staged the data for the job in to the RSA nodes,

the RSA space must be made available to the compute job. A script14 called through

SLURM’s Prolog script checks the rsa-state, and, if the staging has completed, it

bind mounts the RSA directory over the original part of the filesystem on the I/O

nodes assigned to the job.

behavior. It is possible that having the data staging complete would be preferable for other
reasons, especially if the stage-in process was responsible for unpacking and pre-processing the
data rather than simply proving an accelerated cache of the files stored on disk. Alternatively, the
stage-in script could be stopped, and the Linux union mount could be used on the I/O nodes to
make the current contents of the RAMDISK accessible alongside the full contents of the original
directory — this would provide faster access to data that has been staged in, while files that were
not staged would remain directly accessible from the disk storage system.

14Appendix K — job-start.sh
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Figure 3.4: RSA state change diagram for Running jobs.
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DESTROYED
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call rsa-construct.sh

ABORTED

call rsa-deconstruct.sh

STAGING_IN

STOPPING_STAGE_IN

call rsa-stop-stage-in.sh

finished

wait for stop to finish

By using a Linux bind mount the RSA directory is made to appear to be at

the original location of the data stage-in directory. The compute job does not need

to know the RSA status. If the RSA was unable to stage in all of the data for the

job before the job started or was not allocated RSA nodes before launching, the

job would instead be reading data in from the disk filesystem directly — albeit at a

reduced speed.

Some time in to the job launch15, the RAMDISK is reset to clear it out and

15Set to a half-hour by default in the proof-of-concept implementation. This is adjustable by
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prepare it to receive output data. The specific state transitions are shown in Figure

3.4. In brief, the following steps are taken:

• The bind mounts on the I/O nodes are released. Note that if the job needs to

read additional data in from the RSA DATA IN directory it would be reading

from the disk filesystem directly, as the underlying disk storage is then exposed

to the job directly16.

• The RAMDISK is destroyed then recreated again from scratch, providing a

new empty RAMDISK.

• The fresh RAMDISK is bind-mounted over the RSA DATA OUT directory on the

I/O nodes assigned to the job.

Once this completes, the RSA Scheduler will make no further changes for this

job until the job moves to the finished state.

3.2.3 Data Staging Out and RSA Tear-Down

Once the job completes, the SLURM Epilog routine will, through one of the

RSA Scheduler’s scripts17, unmount the RAMDISK from the I/O nodes, and update

the RSA Scheduler’s job state information. The RSA Scheduler then handles the

finished state transitions as shown Figure 3.5. Briefly, the RSA Scheduler:

• Removes the bind mounts from the I/O nodes. Note that if the bind mounts

were not in place, the RSA Scheduler will skip the data stage-out step and

release the RSA nodes immediately.

• Stages data back out to the disk storage systems. If requested, a custom post-

processing script can be run here. This is controlled by the RSA POSTPROCESS

variable in the SLURM job file. Otherwise, the default stage-out script will

copy data from the RAMDISK back to the RSA DATA OUT directory in the disk

storage.

each the job through the RSA DELAY variable.
16The mounts will not be released until any open files have been closed. If the job does not close

out the input files until the end of the job, the RSA will not be used to stage data out as this
transition to prepare the RSA to stage-out will not complete until after the compute job finishes.

17Appendix N — job-finish.sh
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Figure 3.5: RSA state change diagram for Finished jobs.
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MOUNTING

UNMOUNT_NEEDED
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• Destroys the RAMDISK filesystem and releases the RSA nodes back to the

RSA Scheduler for allocation to another job.

3.2.4 Data Staging

The data staging steps, both for moving data in before job execution and for

pushing data back to the disk storage system after job completion, are designed to

be flexible and allow for customization by the end-user.

The default data flow implemented by the RSA Scheduler is to have data read

in from the RSA DATA IN directory specified by the job to the RAMDISK. This data

is then removed at a predetermined time, and the RAMDISK is reset to receive

output data. After job completion data is staged out by directly copying it from

the RAMDISK back to the RSA DATA OUT directory specified by the job on the disk

filesystem.

Alternatively, if the user provides either a RSA PREPROCESS or RSA POSTPROCESS

script in their job script those are used instead. These scripts are executed under
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their user account through use of the sudo command to ensure that the underlying

filesystem security is maintained. In addition, these scripts are able to perform more

complex operations than simply copying the data back and forth.

As an example, there are quite a few scientific applications that structure their

results as a set of many independent files, usually one file per process thread [21, 22].

This simplifies their I/O behavior as each independent compute thread is able to

independently output data with no job-wide coordination, and the I/O throughput

of all of the I/O nodes associated with that job is available. The downside to

this approach is that metadata operations on large-scale compute systems tend to

be costly [7] [53] and writing out results as thousands of small files leads to poor

filesystem performance.

As an alternative to this file-per-process model, libraries such as PLFS [5],

Parallel HDF5 [17], and Parallel netCDF [29] aim to improve performance for sci-

entific data sets by coordinating access to a single shared file. The trade-off with

these approaches is that they require modification to the application itself.

The RSA system can then improve this common case without requiring appli-

cation modification — only the addition of a custom data staging script external to

the application itself. The application can write out these many-small-files to the

RAMDISK, and the stage-out script can aggregate them together into a single file.

One simple mechanism to accomplish this is to use the tar command to package

them into one larger file. Advanced cases could use the RSA nodes to post-process

the data and distill it to a form more convenient for the end user. Compression

could also be used on the results in preparation for transfer outside of the HPC

center.

In such a case the RSA PREPROCESS step could be used to unpack this tar file

before job execution, and the RSA scheduler would ensure that the RSA PREPROCESS

step completes before the end-user’s job could start execution on the compute sys-

tem. This restriction would be implemented in the startup script18 that is respon-

sible for preparing the I/O nodes.

18Appendix K — job-start.sh
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Proof-Of-Concept System

4.1 Target Full-scale Architecture

The RAMDISK Storage Architecture was developed specifically to meet RPI’s

requirements for a next-generation supercomputing facility [9, 15]. The full-scale

design calls for a 4-Terabyte RSA cluster (consisting of 32 nodes, each with 128GB

of 1333 MHz DDR3 DRAM) interconnected to the compute system with 40Gbps

Infiniband. The proposed compute system is a 512-node IBM Blue Gene/Q model

100. It is a 100TFlop system with 8 I/O nodes, each compute node consisting of a

16-core PowerA2-based CPU with 16GB of DDR3 DRAM [14, 33].

The proof-of-concept implementation demonstrated here is designed to match

the operating environment of the full-scale system as closely as possible. An IBM

Blue Gene/L acts as a stand-in for the proposed Blue Gene/Q system. Architec-

tural similarities mean that integration work done in this proof-of-concept system

should translate to the proposed Blue Gene/Q system and its associated manage-

ment interfaces with only slight adjustments. The stand-in for the RSA cluster is

constructed from similar hardware to the target environment. The only differences

between them are the decreased DRAM capacity, 32GB per node versus a target

of 128GB, and node count, 16 nodes in the proof-of-concept versus 32 in the target

system.

There is one critical difference in the network architecture of the proof-of-

concept system compared to the proposed full-scale system. The network in the

prototype has a bottleneck at the single Gigabit Ethernet link connecting the RSA

cluster to the Blue Gene/L’s functional network that the I/O nodes are connected

to, whereas in the proposed environment there would be a non-blocking 40Gbps

Infiniband fabric connecting the Blue Gene/Q I/O nodes to the RSA nodes.

22
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4.2 Proof-Of-Concept Hardware Implementation

To test the entire RSA system, from the scheduling and dynamic allocation

of the RAMDISK Storage Accelerator through to file access on the compute nodes,

a proof-of-concept system was assembled using systems on the RPI campus. The

RAMDISK Storage Accelerator was implemented by borrowing 16 nodes of the

Scientific Computation Research Center’s Hydra cluster [46]. Each node in the

Hydra cluster contains a 2.3GHz, 8-core AMD Opteron processor and 32 GB of

1333MHz ECC DDR3 memory, and is connected to a Gigabit Ethernet network.

The cluster nodes run Debian GNU/Linux 6.0 with a custom 2.6.37 Linux kernel,

and use PVFS version 2.8.2 to construct the RAMDISKs.

The compute system used for testing is the RPI SUR Blue Gene/L [47], con-

sisting of 1024 compute nodes and 32 I/O nodes. PVFS version 2.8.2 was installed

on both the I/O nodes in the system, as well as the frontend node, allowing both

to directly access the PVFS-based RAMDISKs exported by the Hydra cluster.

The systems were linked together by running a single Gigabit Ethernet link

between the Gigabit Ethernet switch in the Hydra cluster and the functional net-

work’s Gigabit Ethernet fabric in the SUR Blue Gene/L. Due to this 1-Gigabit

Ethernet bottleneck between the RSA cluster and the compute system, results in

the form of I/O performance improvements were not specifically sought for. Due

to this bottleneck, the proof-of-concept system cannot demonstrate the order-of-

magnitude performance advantages expected from the RSA system in the full-scale

environment. Instead, the purpose of the proof-of-concept system is to demonstrate

that the scheduling mechanisms function properly, that dynamic creation of the

necessary RAMDISKs can be managed, that the correct set of I/O nodes are able

to access the correct RAMDISKs, and that data stage-in and stage-out mechanisms

behave as designed.

4.3 RSA Scheduler Implementation

The BASH scripting language ties the disparate systems together and con-

structs the RSA Scheduler itself. BASH is readily available on the three main

components of the proof-of-concept system — the SUR Blue Gene front-end-node,
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I/O nodes, and the RSA nodes — and is therefore an ideal choice for linking them

together. Additionally, the interpreted nature of shell scripting makes it easier to

modify the code to fit different systems, especially as modifications would be re-

quired to make the system run on the targeted full-scale Blue Gene/Q architecture.

4.3.1 RSA Scheduler

The main body of the RSA Scheduler19 is implemented as an as asynchronous

state-machine-driven single-pass routine. This routine is then executed on a fixed

schedule to poll for system changes and take the appropriate next steps for each

job. State transitions are denoted by changes in the status of the compute job —

the job-state — and changes in the state of the RSA nodes — the rsa-state.

On each pass through the core scheduling logic, jobs are first organized by their

job-state and then the rsa-state within each subsection.

External call-outs are made to handle interaction with other components. This

includes creating and destroying RAMDISKs on demand, managing RAMDISK ac-

cess on the Blue Gene I/O nodes, as well as starting and stopping data-staging

scripts. These external programs will update the rsa-state upon completion. The

RSA Scheduler will then be able to take the appropriate next step on a later pass

through the scheduling logic. Figure 3.1 shows the different job-state transitions.

Note that job-state transitions here are driven by the actions of the SLURM sched-

uler and the compute job, and not those of the RSA Scheduler itself and thus may

occur at any time. Transitions between rsa-states are handled based on the cur-

rent job-state. Transitions between jobs in the on-deck state are given in Figure

3.2, between demoted jobs in Figure 3.3, running in Figure 3.4, and finished in

Figure 3.5.

4.3.2 RSA Node Assignment

Eligible jobs in the on-deck job-state are assigned RSA nodes in a fixed

proportion to the number of requested compute nodes by a separate function20.

When sufficient nodes are available, they are assigned and removed from the list of

19Appendix A — rsa-scheduler.sh
20Appendix P — try-to-assign-nodes.sh
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free nodes. Jobs that do not request RSA resources, as well as those requesting too

few compute nodes21 to be eligible to use the RSA, are moved to the INELIGIBLE

rsa-state. These variables are determined by the script used to parse the user-

submitted SLURM batch script22.

4.3.3 RSA Construction and Destruction

Two call-out scripts manage creation23 and destruction24 of the RAMDISKs

on the assigned RSA nodes. Construction is accomplished on each node by transfer-

ring the PVFS configuration over to the node, mounting the /dev/ram0 RAMDISK

on each node, and starting the PVFS server process. The newly created RAMDISK

is mounted on the frontend node so that it is available to the data staging scripts.

RSA destruction reverses this process by unmounting the RAMDISK from the con-

trol node, connecting out to stop the PVFS server processes and then unmounting

the RAMDISK from each node. Call-outs to scripts installed on the RSA nodes

handle the local setup25 and destruction26 processes on each node directly and can

be tailored to support different RSA node configurations and parallel filesystems.

4.3.4 Data Stage-In and -Out

Separate scripts are used to stage data in27 and out28 of the RSA. Data stag-

ing in both directions is, by default, handled by the rsync command29. Data is

copied from and to the job’s RAMDISK and the directories set by the RSA DATA IN

and RSA DATA OUT variables in the user-submitted job script. The default stage-in

and stage-out scripts can be replaced with ones specified by the user through the

21Jobs requesting too few compute nodes would be proportionally allocated less than one RSA
node. As the RSA nodes are meant to be dedicated to individual jobs such a request is ignored.
An enhanced version of the RSA could provide fractional resources if desired by using smaller
RAMDISKs on each RSA node and divvying them up between smaller-sized jobs.

22Appendix R — parse-job-options.sh
23Appendix D — rsa-construct.sh
24Appendix E — rsa-deconstruct.sh
25Appendix F — create-ramdisk.sh
26Appendix G — destroy-ramdisk.sh
27Appendix H — rsa-stage-in.sh
28Appendix J — rsa-stage-out.sh
29The rsync command recursively copies data from a given folder to a destination, while pre-

serving file attributes such as access time and file permissions.
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RSA STAGE IN and RSA STAGE OUT variables.

A separate script30 cancels a running stage-in process in the event that a job

has been demoted or if job execution has started before the data stage-in finished.

4.3.5 SLURM Integration

There are two points of integration within the SLURM scheduler itself. The

first is a script launched immediately before the compute job begins execution as part

of SLURM’s Prolog script31. The second is launched by SLURM’s Epilog routine32

immediately after the compute process finishes.

The start script determines the current rsa-state and, if the RAMDISK is

ready, mounts the RAMDISK on the I/O nodes (this is handled separately33). It

then updates both the rsa-state and job-state.

The finish script unmounts the RAMDISK from the I/O nodes34 and updates

the rsa-state and job-state. The RSA Scheduler then starts the data stage-out

process on its next pass.

4.3.6 Supplemental Scripts

A small monitoring utility35 can be used to track the rsa- and job-state for

active jobs. It is designed to run within the UNIX watch command. For example,

running it as watch -n 15 ./rsa-status.sh will show updates of the status every

15-seconds.

Global environment variables affecting the RSA Scheduler installation are set

centrally36. Tunable settings here include the PROPORTION of compute nodes to RSA

nodes and the DEFAULT DELAY between using the RAMDISK to stage data in and

out.

Another utility37 implements a function to translate between a SLURM job

30Appendix I — rsa-stop-stage-in.sh
31Appendix K — job-start.sh
32Appendix N — job-finish.sh
33Appendix L — rsa-mount-on-ionodes.sh
34Appendix M — rsa-unmount-from-ionodes.sh
35Appendix B — rsa-status.sh
36Appendix C — global.sh
37Appendix O — job-to-ionodes.sh
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id and a list of the I/O nodes in the assigned Blue Gene block. An initialization

utility38 is given to initialize the rsa-state from scratch. Yet another utility39

dynamically creates a PVFS configuration file corresponding to a given job’s set of

allocated RSA nodes, and can be modified to match the parallel filesystem used.

38Appendix S — prepare-machine.sh
39Appendix Q — rsa-config-gen.sh



CHAPTER 5

Results and Discussion

5.1 RSA Scheduler Results

A sample log file from running the RSA-scheduler on the SUR Blue Gene along-

side eleven test jobs is attached as Appendix T. Jobs are shown running through

most scheduling scenarios along with the timestamp for each event occurrence. This

demonstrates that the RSA scheduler is functioning correctly, and is able to perform

all required functions for enabling the RAMDISK Storage Accelerator architecture.

5.2 Prototype System Results

A series of test jobs were run to demonstrate performance improvements from

using the RSA on the proof-of-concept system. A major caveat here is that any

performance results are influenced by the 1-Gigabit network bottleneck between the

RSA nodes and the I/O nodes, and that this is an expected limitation of the proof-

of-concept environment. In the proposed full-scale system this bottleneck would not

exist, as the RSA nodes would be directly connected to the same 40Gbps Infiniband

fabric as the I/O nodes.

5.2.1 Results for a Single Compute Thread and Single File

A first attempt at comparing performance between the GPFS system and the

RSA in the prototype demonstrated only a minor improvement. The results are

shown in Table 5.2.1. The test case was configured to write out a 2GB file through

a single compute thread. Only a minor difference between writing results out via

the RSA, versus directly to the GPFS system can be seen — a 13% speedup, a far

cry from the order-of-magnitude improvement expected from the full-scale system.

In both the RSA and GPFS cases the peak speed attained by the single compute

thread is close to 50MB/s. Both the RSA and GPFS systems should be capable

of better performance than this. On further investigation prior results were found

demonstrating that a single I/O node’s network performance (and thus its networked

28
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Table 5.1: Comparison of output performance of GPFS disk storage vs.
RSA, single thread writing. Times are in seconds.

No RSA With RSA
Output Time Output Time Stage-Out Time

Run 1 46.60 41.19 54
Run 2 47.69 41.44 48
Run 3 46.35 41.27 54

Mean 46.88 41.30 52

filesystem performance) on a Blue Gene/L system is around 50MB/s [31, 56]. Thus,

this result primarily demonstrates this same bottleneck.

5.2.2 Results for a Single-File-Per-Process over 1024 Nodes

A second approach to demonstrating I/O differences between the systems is to

run the test case under One-File-Per-Process mode. Table 5.2.2 shows the consoli-

dated results for three runs in three different modes of operation. The first case is

for writing results directly to GPFS, and the second and third cases are for writing

to the RAMDISK instead. The second and third cases differ only in the method

used to stage data back to disk.

Writing out the 2048 files from the 1024-node job to the GPFS filesystem

directly takes an average of 1109 seconds, or over 18 minutes, while the same data

written to the RSA instead takes only 37 seconds — a 2800% speedup. This slow

performance from GPFS is due to lock contention on the output directory. This is

a known limitation of GPFS [4, 19].

The data written to the RAMDISK needs to be staged-out to the GPFS sys-

tem. Results for two methods for staging data back to the GPFS system are shown.

The first method uses the default stage-out script, which uses the rsync command,

to transfer the data back to GPFS. This stage-out step directly shows the perfor-

mance gains achievable by avoiding contention on GPFS as the resulting files after

the stage-out has finished are the same as they would be if written directly to GPFS

by the compute job. This gain is due to the stage-out being handled by a single pro-

cess writing data sequentially, as opposed to 2048 compute threads simultaneously
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Table 5.2: Comparison of output performance of GPFS disk storage vs.
RSA, 1024 nodes (2048 processes) in file-per-process, with normal and
custom post-processing scripts. Times are in seconds.

No RSA RSA With Default Stage-Out RSA with Custom Stage-Out
Output Output Stage-Out Output Stage-Out

Run 1 1158.81 36.11 222 35.76 179
Run 2 1193.92 36.25 227 36.25 178
Run 3 976.84 35.26 224 35.97 181

Mean 1109.86 35.87 224 36.43 179

competing for access, which avoids metadata lock contention in GPFS.

The second stage-out method inserts a custom RSA STAGE OUT script. This

script is configured to use the tar command to combine the separate files into a

single output file (with no compression). This clearly shows a performance gain

versus the default rsync method — storing the results in one large file is definitely

preferred. Due to the asynchronous nature of the RSA the time taken to stage back

to disk is relatively unimportant as long as the RSA nodes are free before the next

job would need to use them to stage data in.

While these results clearly show a deficiency in the GPFS implementation, it

must be stressed that the One-File-Per-Process mode is a common one among HPC

applications [6, 21, 22, 27, 38, 54], and this is clearly an instance where the RSA

would be particularly beneficial.

5.2.3 Results for a Single File via MPI-IO over 1024 Nodes

A third test was then run to show results that are not directly influenced by

contention in GPFS. By changing the write-out mode of the simulation to using

a single shared file through MPI-IO, the same 2GB test dataset is produced while

avoiding the metadata contention that caused GPFS problems in one-file-per-process

mode. Results below substantial improvement for GPFS, although this is still 35%

slower than writing results as file-per-process to the RAMDISK as seen in Section

5.2.2.
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Table 5.3: Comparison of output performance of GPFS disk storage vs.
RSA, 1024 nodes (2048 processes) using MPI-IO to write a single shared
file. Times are in seconds.

No RSA, MPI-IO
Run 1 43.595017
Run 2 51.371842
Run 3 54.810469

Mean 49.925776

Testing determined that MPI-IO is not supported on PVFS 2.8 filesystems

with the Blue Gene/L MPI stacks40. Thus, results for the RSA for a single file via

MPI-IO cannot be obtained on the proof-of-concept system. MPI-IO on PVFS2 will

be supported by the target Blue Gene/Q architecture.

5.2.4 IOR Benchmark Results

The IOR synthetic filesystem benchmark [43] was run against the PVFS-based

RSA RAMDISK and the GPFS filesystem to compare relative performance. IOR

was configured to run four write-out and read-in passes against both, with a 1MB

file per process (2048 files). Results as an average of the four runs on each system

are shown in Table 5.2.4. Notably, the IOR benchmark times the initial delay in

opening each file. This value directly demonstrates the overhead in GPFS for file

creation.

The RSA again demonstrates its value with a 180% performance improvement

when writing results out versus the GPFS filesystem. The read performance for the

two systems is much closer here and demonstrates only a 54% improvement for the

RSA. Especially telling here is the delay in opening files for writing out — GPFS

needs an additional 80 seconds compared to the RSA. This delay is not reflected in

the write throughput performance number given before. If it were factored in the

RSA would show a 220% performance gain instead.

Also specifically of interest is the 100MBytes/sec value that the RSA achieves

40PVFS2 needs direct support in MPI-IO [40]. MPI-IO support is enabled through the MPI
toolchain on each system. On a Blue Gene/L this is a proprietary package with support for the
Blue Gene/L interconnect hardware, and an updated version is not available.



32

Table 5.4: Consolidated Results from the IOR benchmark on both
RAMDISK and GPFS filesystems, over 1024 nodes.

RSA GPFS

Write Time (seconds) 204.16 573.28
File Open Delay (seconds) 0.43 83.27
Read Time (seconds) 187.48 289.12
Write, MBytes/sec 100.31 36.18
Read, MBytes/sec 109.24 70.89

on both read and write performance — this corresponds to the maximum perfor-

mance possible given the Gigabit Ethernet bottleneck between the systems. To

demonstrate this the iperf [50] benchmark was run between the frontend node on

the SUR Blue Gene/L and a Hydra node to quantify the maximum performance

possible between these systems. A peak bandwidth between them of 943Mbit/sec

was observed, or 117.9MBytes/sec. The iperf result correlates to the maximum

speed possible over a Gigabit Ethernet link [13], and the read performance result

achieved by the RSA is then within 8% of this maximum value. The RSA results

are certainly affected by this network bottleneck.

5.3 RAMDISK Performance Results

As the results obtained from the proof-of-concept system do not demonstrate

the true performance benefits available from the RSA due to the Gigabit Ethernet

bottleneck in the proof-of-concept system, a further test was run to determine the

potential performance of a single RSA node.

The bonnie++ [11] benchmark was run on a single Hydra node against a locally

created RAMDISK as a baseline performance measurement. The results given are

for an ext2 formatted 30 Gigabyte RAMDISK, the same configuration used to build

out the PVFS2 parallel RAMDISK. Table 5.3 shows the results, notably an average

write speed of 867 MBytes/sec and read of 3.4 GBytes/sec. A notable difference

here is the write versus re-write performance. The Linux memory page management

is responsible for the lower performance in the write case as it adds additional delay

when assigning memory pages to the RAMDISK. In the re-write case these pages are
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Table 5.5: Consolidated Results from the Bonnie++ benchmark on a
single RSA node.

Test Performance

Write, MBytes/sec 867
Rewrite, MBytes/sec 1,163
Read, MBytes/sec 3,484
File creation per second 7470

already assigned and can be quickly overwritten. Future work could address these

difference and pre-allocate the entire space to the RAMDISK ahead of operation.

An additional set of tests could determine the scalability of the RSA systems

within the Hydra cluster. However, during implementation it was discovered that

software incompatibilities between current versions of PVFS2 and the Linux kernel

prevented using the Hydra nodes from connecting to the PVFS2 filesystem as clients.

While the PVFS2 server runs in userspace without issue on these systems, the

PVFS2 kernel client module does not support the 2.6.37 kernel used on Hydra. At

present, any kernel that would support the PVFS2 client module would not be able

to support the Infiniband adapters available in Hydra, so any attempt at scaling

results would be bound by the performance of the Gigabit Ethernet switch.



CHAPTER 6

Conclusion

The RAMDISK Storage Architecture presents a novel method of handling the grow-

ing divide between I/O throughput and compute system power on large-scale HPC

systems.

Dedicated I/O resources in the form of parallel RAMDISKs — virtual storage

space backed by DRAM on individual RSA nodes and aggregated together using

a parallel filesystem — are assigned on-demand to jobs on the compute system.

Asynchronously staging data in and out of these RAMDISKs provides a mechanism

to support higher throughput on the compute system, as jobs no longer sit idle on the

compute system waiting for data to be loaded-in or written-out to a comparatively

slow persistent disk storage systems. Instead each job makes use of the higher-

performance RAMDISK assigned to it to read initial datasets in and write results

out.

The RSA Scheduler implements the required asynchronous data staging and

RSA system management mechanisms by providing an additional scheduling layer

built around the SLURM job scheduler. The RSA Scheduler is implemented as

an asynchronous state-transition machine such that the core scheduling duties are

handled in a minimal time and external operations such as RAMDISK construction

and deconstruction, data staging, and node management do not impact the core

scheduling mechanism.

A proof-of-concept system has been demonstrated with the prototype RSA

Scheduler in operation and demonstrates the viability of the asynchronous staging

model. Performance results, including a 2800% improvement in one specific instance,

are shown for running with and without use of the RSA on a proof-of-concept system.
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APPENDIX A

rsa-scheduler.sh

1 #!/bin/bash

2

3 source global.sh

4

5 # find jobs that have started running

6 JOBS_RUNNING=‘squeue -h --start -t R -o "%i"‘

7

8 # find all jobs we currently have state info for

9 JOBS_WITH_STATE=‘find $STATE_DIR/job -mindepth 1 -maxdepth 1 -type

d -printf "%f\n"‘

10

11 # find jobs that are on-deck , i.e. waiting for Resources

12 JOBS_ON_DECK=‘squeue -h -t PD -o "%i %R" | grep Resources | cut -f

1 -d ’ ’‘

13

14 # jobs in CF (configuring) state. these are effectively running now

,

15 # but will not set job state to running until finished booting the

block for the job

16 JOBS_CONFIGURING=‘squeue -h -t CF ,R -o "%i"‘

17

18 # jobs we have state info for can be:

19 # - ONDECK - still on deck

20 # - DEMOTED - cancelled or moved back to waiting on "( Priority)"

21 # - RUNNING - actively running

22 # - FINISHED - done execution , but RSA can still be staging out

23

24 for job in $JOBS_WITH_STATE; do

25 still_on_deck =0

26

27 JOB_DIR=$STATE_DIR/job/$job

28 job_state=‘cat $JOB_DIR/job -state ‘

29
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30 if [[ $job_state == "DEMOTED" ]]; then

31 # DEMOTED jobs are forced to stay demoted until cleanup

finishes

32 # even if they would be otherwise ONDECK

33 JOBS_DEMOTED="$job $JOBS_DEMOTED"

34 continue

35 fi

36

37 if [[ $job_state == "FINISHED" ]]; then

38 JOBS_FINISHED="$job $JOBS_FINISHED"

39 # skip out of this loop cycle , on to the next job

40 continue;

41 fi

42

43 if [[ $job_state == "RUNNING" ]]; then

44 JOBS_RUNNING="$job $JOBS_RUNNING"

45 # skip out of this loop cycle , on to the next job

46 continue;

47 fi

48

49 # find jobs that were previously on deck , and are still on deck

50 for j in $JOBS_ON_DECK; do

51 if [[ $job -eq $j ]]; then

52 still_on_deck =1

53 continue

54 fi

55 done

56

57 # find jobs that were previously on deck , and are now configuring

58 # this avoids a race condition between block boot time and the

delay for the rsa scheduler

59 for j in $JOBS_CONFIGURING; do

60 if [[ $job -eq $j ]]; then

61 still_on_deck =1

62 continue

63 fi

64 done

65
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66 # if the job was previously on deck , but is not on deck now (and

not running or finished), demote it

67 if [[ $still_on_deck -eq 0 ]]; then

68 JOBS_DEMOTED="$job $JOBS_DEMOTED"

69 fi

70 done

71

72 # cycle through demoted jobs

73 for job in $JOBS_DEMOTED; do

74 # this job has been removed from on deck , we need to release its

resources

75 # our cleanup actions depend on the state of the RSA block

76

77 JOB_DIR=$STATE_DIR/job/$job

78

79 job_state=‘cat $JOB_DIR/job -state ‘

80 rsa_state=‘cat $JOB_DIR/rsa -state ‘

81

82 echo ‘date +%s‘ "job $job has been demoted"

83

84 case $rsa_state in

85 BOOTING)

86 # let boot script finish; hard to tear -down mid -bootup

87 ;;

88 TEARDOWN)

89 # wait for teardown to complete

90 ;;

91 BOOTED|READY|ABORTED)

92 # tear down booted block

93 echo "DEMOTED" > $JOB_DIR/job -state

94 echo "TEARDOWN" > $JOB_DIR/rsa -state

95 ./rsa -deconstruct.sh $job &

96 ;;

97 STAGING_IN)

98 # kill staging script , this will set rsa -state to ABORTED once

done and we ’ll finish cleanup on the next pass

99 if [[ $job_state == "ONDECK" ]]; then
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100 # if job_state is ondeck , then this is our first pass at

stopping the data staging

101 # we want to avoid trying to kill it every scheduler pass

102 echo "DEMOTED" > $JOB_DIR/job -state

103 ./rsa -stop -stage -in.sh $job &

104 fi

105 ;;

106 DESTROYED|ASSIGNED)

107 # release allocated RSA nodes

108 cat $JOB_DIR/rsa -nodes >> $STATE_DIR/rsa -node/free

109

110 # remove job state files

111 echo ‘date +%s‘ "removing state files for job $job due to

demotion/destruction"

112 rm -r $JOB_DIR

113 ;;

114 INELIGIBLE|INITIAL)

115 # remove job state files

116 echo ‘date +%s‘ "removing state files for job $job due to

demotion/destruction"

117 rm -r $JOB_DIR

118 ;;

119 esac

120 done

121

122 # handle "on-deck" jobs - jobs that are not currently running , but

are next in line

123 for job in $JOBS_ON_DECK; do

124

125 JOB_DIR=$STATE_DIR/job/$job

126

127 if [ ! -d $JOB_DIR ] ; then

128 # this is a newly promoted job , create initial state

129

130 mkdir $JOB_DIR

131 echo "INITIAL" > $JOB_DIR/rsa -state

132 echo "ONDECK" > $JOB_DIR/job -state

133 fi
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134

135 rsa_state=‘cat $JOB_DIR/rsa -state ‘

136 case $rsa_state in

137 INITIAL)

138 # if this fails , we’ll loop back around again

139 # if it works we’ll end up in BOOTING next round

140 ./try -to -assign -nodes.sh $job # block on this

141 ;;

142 ASSIGNED)

143 echo "BOOTING" > $JOB_DIR/rsa -state

144 ./rsa -construct.sh $job &

145 ;;

146 BOOTING)

147 # still booting , do nothing

148 ;;

149 BOOTED)

150 # finished booting , begin staging

151 echo ‘date +%s‘ "starting data staging script for job $job"

152 echo "STAGING_IN" > $JOB_DIR/rsa -state

153 ./rsa -stage -in.sh $job &

154 ;;

155 STAGING_IN)

156 # wait for data to finish staging , do nothing

157 ;;

158 READY)

159 # waiting on job execution , do nothing

160 ;;

161 INELIGIBLE)

162 # skip this job , we can ’t provide any resources for it

163 ;;

164 esac

165 done

166

167 # handle running jobs

168 for job in $JOBS_RUNNING; do

169 JOB_DIR=$STATE_DIR/job/$job

170 rsa_state=’’

171 [ -e $JOB_DIR/rsa -state ] && rsa_state=‘cat $JOB_DIR/rsa -state ‘
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172

173 case $rsa_state in

174 INITIAL)

175 # if this fails , we’ll loop back around again

176 # if it works we’ll end up in ASSIGNED next round

177 ./try -to -assign -nodes.sh $job # block on this

178 ;;

179 ASSIGNED|DESTROYED)

180 # build up the RAMDISK

181 echo "BOOTING" > $JOB_DIR/rsa -state

182 ./rsa -construct.sh $job &

183 ;;

184 INELIGIBLE)

185 # job not using RSA , skip

186 ;;

187 INUSE_IN)

188 # if the job has been running for $DELAY , then go to ABORTED so

we can use it to stage data out

189 JOB_DELAY=‘cat $JOB_DIR/rsa -delay ‘

190 JOB_START=‘cat $JOB_DIR/job -start ‘

191 NOW=‘date +%s‘

192 if [[ ! -f $JOB_DIR/rsa -data -out ]]; then

193 # if we aren ’t going to be used to stage data out , skip out

of here and leave us in INUSE_IN

194 continue

195 fi

196 if [[ $NOW -gt $(( $JOB_START + $JOB_DELAY )) ]] ; then

197 echo ‘date +%s‘ "switching from staging in to out for job

$job"

198 echo "UNMOUNT_NEEDED" > $JOB_DIR/rsa -state

199 fi

200 ;;

201 UNMOUNT_NEEDED)

202 # unmount from I/O nodes so we can reuse

203 echo "UNMOUNTING" > $JOB_DIR/rsa -state

204 ./rsa -unmount -from -ionodes.sh $job UNMOUNTED &

205 ;;

206 INUSE_OUT)
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207 # RSA is in use to stage data out , nothing to do

208 ;;

209 STAGING_IN)

210 # destroy the RAMDISK so we can rebuild it to stage data out ,

jumps to ABORTED next

211 echo "STOPPING_STAGING_IN" > $JOB_DIR/rsa -state

212 ./rsa -stop -stage -in.sh &

213 ;;

214 STOPPING_STAGING_IN)

215 # wait for rsa -stop -stage -in.sh to complete , it will set state

to ABORTED when done

216 ;;

217 ABORTED|UNMOUNTED)

218 # tear the block apart so we can reuse it

219 echo ‘date +%s‘ "tearing down and rebuilding for job $job"

220 echo "TEARDOWN" > $JOB_DIR/rsa -state

221 ./rsa -deconstruct.sh $job &

222 ;;

223 BOOTING|MOUNTING|TEARDOWN)

224 # still booting , do nothing

225 ;;

226 BOOTED)

227 # mount on nodes as stage_out

228 echo "MOUNTING" > $JOB_DIR/rsa -state

229 ./rsa -mount -on -ionodes.sh $job INUSE_OUT &

230 ;;

231 esac

232 done

233

234 # handle finished jobs

235 for job in $JOBS_FINISHED; do

236 JOB_DIR=$STATE_DIR/job/$job

237 rsa_state=’’

238 [ -e $JOB_DIR/rsa -state ] && rsa_state=‘cat $JOB_DIR/rsa -state ‘

239

240 case $rsa_state in

241 BOOTING|MOUNTING|TEARDOWN|UNMOUNTING)
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242 # do nothing , wait for current action to finish before

destroying

243 ;;

244 UNMOUNT_NEEDED)

245 # unmount from I/O nodes , fix a race condition here

246 echo "UNMOUNTING" > $JOB_DIR/rsa -state

247 ./rsa -unmount -from -ionodes.sh $job UNMOUNTED &

248 ;;

249 INUSE_OUT)

250 # RSA was in use for staging data out , we need to launch the

stage -out script

251 echo "STAGING_OUT" > $JOB_DIR/rsa -state

252 ./rsa -stage -out.sh $job &

253 ;;

254 STAGING_IN)

255 # job completed rather quickly ... stop the stage in

256 echo "STOPPING_STAGING_IN" > $JOB_DIR/rsa -state

257 ./rsa -stop -stage -in.sh $job &

258 ;;

259 STOPPING_STAGING_IN)

260 # wait for rsa -stop -stage -in.sh to complete , it will set state

to ABORTED when done

261 ;;

262 STAGING_OUT)

263 # do nothing , data is being pushed back to disk storage

264 ;;

265 DONE_STAGING_OUT|READY|INUSE_IN|ABORTED|BOOTED|UNMOUNTED)

266 # destroy , as staging has finished or the RSA was not used for

output , only input

267 echo "TEARDOWN" > $JOB_DIR/rsa -state

268 ./rsa -deconstruct.sh $job &

269 ;;

270 DESTROYED|ASSIGNED)

271 # release allocated RSA nodes

272 cat $JOB_DIR/rsa -nodes >> $STATE_DIR/rsa -node/free

273 mv $JOB_DIR/rsa -log $STATE_DIR/logs/$job -rsa -log

274 rm -r $JOB_DIR

275 ;;
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276 INITIAL|INELIGIBLE)

277 # remove job state files

278 echo ‘date +%s‘ "removing state files for job $job due to job

completion"

279

280 mv $JOB_DIR/rsa -log $STATE_DIR/logs/$job -rsa -log

281 rm -r $JOB_DIR

282 ;;

283 esac

284

285

286

287 done
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rsa-status.sh

1 #!/bin/bash

2

3 # simple monitoring script to get the RSA status

4 # suggest running as: watch -n15 ./rsa -status.sh

5 source global.sh

6

7 printf "%7s%20s%20s\n" job job_state rsa_state

8

9 for job in ‘find $STATE_DIR/job -mindepth 1 -maxdepth 1 -type d -

printf "%f\n"‘; do

10 job_state=""

11 rsa_state=""

12

13 [ -f $STATE_DIR/job/$job/job -state ] && job_state=‘cat $STATE_DIR

/job/$job/job -state ‘

14 [ -f $STATE_DIR/job/$job/rsa -state ] && rsa_state=‘cat $STATE_DIR

/job/$job/rsa -state ‘

15

16 printf "%7s%20s%20s\n" $job $job_state $rsa_state

17 done
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global.sh

1 #!/bin/bash

2

3 export STATE_DIR="/tmp/rsa -state"

4

5 export SCRIPT_DIR =/gpfs/gpfs0/home/wickbt/thesis -scripts

6

7 # set to 1 to simulate runs only

8 export SIMULATE =0

9 #export SIMULATE =1

10

11 # proportion of compute nodes to each RSA node , set this according

to system scale:

12 export PROPORTION =128

13

14 # default delay for RSA to switch from staging in to preparing for

staging out

15 export DEFAULT_DELAY =300
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rsa-construct.sh

1 #!/bin/bash

2

3 source global.sh

4

5 job=$1

6

7 JOB_DIR=$STATE_DIR/job/$job

8 LOG=$JOB_DIR/rsa -log

9

10 echo ‘date +%s‘ "constructing RSA block for job $job" | tee -a $LOG

11

12 if [ $SIMULATE -eq 1 ]; then

13 # simulate delay in starting RSA block

14 sleep 10

15 else

16 # connect to nodes and construct RSA block

17

18 PVFSCONF=$JOB_DIR/pvfs -$job.conf

19

20 for i in ‘cat $JOB_DIR/rsa -nodes ‘; do scp -q $PVFSCONF $i:/tmp ;

done

21

22 #PVFS

23 for i in ‘cat $JOB_DIR/rsa -nodes ‘; do ssh $i /cluster/rsa/create -

ramdisk.sh $job ; done 2> /dev/null

24

25 # give the PVFS filesystem a few seconds to stabilize

26 sleep 10

27

28 mount -t pvfs2 tcp://$i :3334/ ramdisk$job $JOB_DIR/ramdisk

29

30 fi

31

52



53

32 echo ‘date +%s‘ "done constructing RSA block for job $job" | tee -a

$LOG

33

34 # update RSA state for this job

35

36 echo "BOOTED" > $JOB_DIR/rsa -state
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rsa-deconstruct.sh

1 #!/bin/bash

2

3 source global.sh

4

5 job=$1

6

7 JOB_DIR=$STATE_DIR/job/$job

8 LOG=$JOB_DIR/rsa -log

9

10 echo ‘date +%s‘ "destroying RSA block for job $job" | tee -a $LOG

11

12 if [ $SIMULATE -eq 1 ]; then

13 # simulate delay in destroying RSA block

14 sleep 10

15 else

16 # connect to nodes and destroy RSA block

17

18 umount $JOB_DIR/ramdisk

19

20 for i in ‘cat $JOB_DIR/rsa -nodes ‘; do ssh $i /cluster/rsa/destroy

-ramdisk.sh $job ; done

21 fi

22

23 echo ‘date +%s‘ "finished destroying RSA block for job $job" | tee

-a $LOG

24

25 echo ’DESTROYED ’ > $JOB_DIR/rsa -state
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create-ramdisk.sh

1 #!/bin/bash

2

3 # create ramdisk on local node

4

5 JOB=$1

6

7 mkfs.ext2 -q -m 0 /dev/ram0

8 mount /dev/ram0 /ramdisk

9

10 # initialize the PVFS filesystem structures on this node:

11 /users/wickbt/pvfs/sbin/pvfs2 -server /tmp/pvfs -$JOB.conf -f

12 # run PVFS on this node

13 /users/wickbt/pvfs/sbin/pvfs2 -server /tmp/pvfs -$JOB.conf
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destroy-ramdisk.sh

1 #!/bin/bash

2

3 # destroy ramdisk on local node

4

5 pkill -9 pvfs2 -server

6

7 umount /ramdisk
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rsa-stage-in.sh

1 #!/bin/bash

2

3 source global.sh

4

5 job=$1

6

7 JOB_DIR=$STATE_DIR/job/$job

8 LOG=$JOB_DIR/rsa -log

9

10 if [ $SIMULATE -eq 1 ]; then

11 echo ‘date +%s‘ "simulating staging data for job $job" | tee -a

$LOG

12

13 # simulate delay in staging data

14 sleep 10

15

16 else

17 if [ -f $JOB_DIR/rsa -data -in ]; then

18 echo ‘date +%s‘ "staging data for job $job" | tee -a $LOG

19 rsa_in=‘cat $JOB_DIR/rsa -data -in ‘

20 user=‘cat $JOB_DIR/user ‘

21

22 if [ -f $JOB_DIR/rsa -stage -in ]; then

23 # custom data stage in script

24 command=‘cat $JOB_DIR/rsa -stage -in ‘

25 else

26 # default to rsync

27 command="rsync -av"

28 fi

29

30 # run the rsync as the user to prevent security issues

31 su - $user -c "$command $rsa_in/ $JOB_DIR/ramdisk" >> $LOG 2>&1

32
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33 sync

34

35 echo ‘date +%s‘ "finished staging data in for job $job" | tee -

a $LOG

36 else

37 echo ‘date +%s‘ "no rsa -data -in directory set for job $job , no

stage -in occuring" | tee -a $LOG

38 fi

39 fi

40

41 # update RSA state for this job

42 echo "READY" > $JOB_DIR/rsa -state
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rsa-stop-stage-in.sh

1 #!/bin/bash

2

3 source global.sh

4

5 job=$1

6

7 JOB_DIR=$STATE_DIR/job/$job

8 LOG=$JOB_DIR/rsa -log

9

10 echo ‘date +%s‘ "stop the data staging process for job $job" | tee

-a $LOG

11

12 if [ $SIMULATE -eq 1 ]; then

13

14 # simulate delay in stopping the processes

15 sleep 1

16

17 else

18

19 pkill -f -9 "rsa -stage -in.sh $job"

20

21 fi

22

23 echo ‘date +%s‘ "stopped data staging process for job $job" | tee -

a $LOG

24

25 echo "ABORTED" > $JOB_DIR/rsa_state
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rsa-stage-out.sh

1 #!/bin/bash

2

3 source global.sh

4

5 job=$1

6

7 JOB_DIR=$STATE_DIR/job/$job

8 LOG=$JOB_DIR/rsa -log

9

10 if [ $SIMULATE -eq 1 ]; then

11 echo ‘date +%s‘ "simulating staging data out for job $job" | tee

-a $LOG

12 # simulate delay in staging data out

13 sleep 30

14

15 else

16

17 if [ -f $JOB_DIR/rsa -data -out ]; then

18 echo ‘date +%s‘ "staging data out for job $job" | tee -a $LOG

19

20 rsa_out=‘cat $JOB_DIR/rsa -data -out ‘

21 user=‘cat $JOB_DIR/user ‘

22

23 if [ -f $JOB_DIR/rsa -stage -out ]; then

24 # custom data stage out script

25 command=‘cat $JOB_DIR/rsa -stage -out ‘

26 else

27 # default to rsync

28 command="rsync -av"

29 fi

30

31 # run the rsync as the user to prevent security issues
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32 su - $user -c "$command $JOB_DIR/ramdisk/ $rsa_out/" >> $LOG

2>&1

33

34 echo ‘date +%s‘ "finished staging data out for job $job" | tee

-a $LOG

35 else

36 echo "no rsa -data -out directory set for job $job , no stage -out

occuring"

37 fi

38 fi

39

40 # update RSA state for this job

41 echo "DONE_STAGING_OUT" > $JOB_DIR/rsa -state
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job-start.sh

1 #!/bin/bash

2

3 # we’re called by SLURM ’s prolog , unlike the rest of the scripts

4 # so we need an explicit path here

5 source /gpfs/gpfs0/home/wickbt/thesis -scripts/global.sh

6 export PATH=/bgl/local/slurm/bin:$PATH

7

8 job=$1

9

10 JOB_DIR=$STATE_DIR/job/$job

11 LOG=$JOB_DIR/rsa -log

12

13 if [ -e $JOB_DIR ]; then

14 rsa_state=‘cat $JOB_DIR/rsa -state ‘

15 case $rsa_state in

16 BOOTING|BOOTED|STAGING)

17 echo ‘date +%s‘ "starting job $job with RAMDISK not ready" >>

$LOG

18 # RAMDISK not usable at this point , will attempt to use in

stage -out instead

19 ;;

20 READY)

21 echo ‘date +%s‘ "starting job $job with RSA enabled" >> $LOG

22

23 cd $SCRIPT_DIR && ./rsa -mount -on -ionodes.sh $job INUSE_IN

24 ;;

25 esac

26 else

27 # job has no state info , must have started immediately

28 # create state info here instead , more state will be added by rsa

-scheduler

29

30 mkdir $JOB_DIR
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31 echo "INITIAL" > $JOB_DIR/rsa -state

32

33 echo ‘date +%s‘ "starting job $job with no previous state" >>

$LOG

34

35 fi

36

37 date +%s > $JOB_DIR/job -start

38 echo "RUNNING" > $JOB_DIR/job -state
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rsa-mount-on-ionodes.sh

1 #!/bin/bash

2

3 # connect out and mount the RAMDISK on the I/O nodes

4

5 source global.sh

6

7 job=$1

8 newstate=$2

9

10 JOB_DIR=$STATE_DIR/job/$job

11 LOG=$JOB_DIR/rsa -log

12

13 if [ $SIMULATE -eq 1 ]; then

14 # running in simulation mode , delay here a bit to match actual

implementation

15 sleep 10

16 else

17 # mount the RAMDISK on all the BG/L I/O nodes

18 ionodes =‘./job -to -ionodes.sh $job ‘

19 first_ramdisk_node=‘head -n 1 $JOB_DIR/rsa -nodes ‘

20 for ionode in $ionodes; do

21 echo ‘date +%s‘ "mounting on $ionode for job $job" >> $LOG

22

23 ssh $ionode mount -t pvfs2 tcp:// $first_ramdisk_node :3334/

ramdisk$job /ramdisk >> $LOG 2>&1

24

25 # add in the bind mounts

26 if [[ -f $JOB_DIR/rsa -data -in && $newstate == "INUSE_IN" ]];

then

27 rsa_in=‘cat $JOB_DIR/rsa -data -in ‘

28 ssh $ionode mount -o bind /ramdisk $rsa_in >> $LOG 2>&1

29 elif [[ $newstate == "INUSE_IN" ]]; then
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30 # we ’re booting the block right now , but weren ’t using it to

stage data in

31 # so jump ahead to using it to stage out

32 newstate="INUSE_OUT"

33 fi

34

35 if [[ -f $JOB_DIR/rsa -data -out && $newstate == "INUSE_OUT" ]];

then

36 rsa_out=‘cat $JOB_DIR/rsa -data -out ‘

37 ssh $ionode mount -o bind /ramdisk $rsa_out >> $LOG 2>&1

38 fi

39 done

40 fi

41

42 jobstate=‘cat $JOB_DIR/job -state ‘

43 if [[ $jobstate == "FINISHED" ]]; then

44 # we’ve lost a race here , jump to UNMOUNT in the FINISHED job -

state to clean up correctly

45 newstate="UNMOUNT_NEEDED"

46 fi

47

48 echo $newstate > $JOB_DIR/rsa -state
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rsa-unmount-from-ionodes.sh

1 #!/bin/bash

2

3 # unmount RAMDISK from a job ’s I/O nodes

4

5 job=$1

6 rsastate=$2

7

8 JOB_DIR=$STATE_DIR/job/$job

9 LOG=$JOB_DIR/rsa -log

10

11 echo ‘date +%s‘ "umounting RSA from I/O nodes on job $job" >> $LOG

12

13 for ionode in ‘$SCRIPT_DIR/job -to -ionodes.sh $job ‘; do

14 # undo the bind mounts if they still exist

15 if [ -f $JOB_DIR/rsa -data -in ]; then

16 rsa_in=‘cat $JOB_DIR/rsa -data -in ‘

17 ssh $ionode umount $rsa_in

18 fi

19

20 if [ -f $JOB_DIR/rsa -data -out ]; then

21 rsa_out=‘cat $JOB_DIR/rsa -data -out ‘

22 ssh $ionode umount $rsa_out

23 fi

24

25 ssh $ionode umount /ramdisk

26 done

27

28 echo $rsastate > $JOB_DIR/rsa -state
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job-finish.sh

1 #!/bin/bash

2

3 # we’re called by SLURM ’s epilog , unlike the rsa -* scripts

4 # so we need an explicit path here

5 source /gpfs/gpfs0/home/wickbt/thesis -scripts/global.sh

6 export PATH=/bgl/local/slurm/bin:$PATH

7

8 job=$1

9 JOB_DIR=$STATE_DIR/job/$job

10 LOG=$JOB_DIR/rsa -log

11

12 echo ‘date +%s‘ "job $job finished , umounting RSA from I/O nodes"

>> $LOG

13

14 # fix state transitions in FINISHED state to avoid a race condition

15 # don ’t try to unmount INELIBIBLE jobs , they never had mounts

active

16 # if we weren ’t using it to stage data out , we set UNMOUNTED to

quickly tear down

17 # otherwise , make sure we end up in INUSE_OUT in FINISHED to start

stage -out

18 rsastate=‘cat $JOB_DIR/rsa -state ‘

19 if [ $rsastate == "INELIGIBLE" ]; then echo "FINISHED" > $JOB_DIR/

job -state; exit ; fi

20 if [ $rsastate != "INUSE_OUT" ]; then rsastate="UNMOUNTED"; fi

21

22 # note: we still attempt to unmount the filesystems , even if they

were not mounted anyways

23 # (no side -effects from attempting if they aren ’t)

24 $SCRIPT_DIR/rsa -unmount -from -ionodes.sh $job $rsastate

25 echo "FINISHED" > $JOB_DIR/job -state
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job-to-ionodes.sh

1 #!/bin/bash

2

3 # convert a SLURM job id to a list of associated ionodes for the

block

4

5 job=$1

6

7 block=‘scontrol show job $job|grep Block_ID|cut -f 2 -d =‘

8 midplanes=‘scontrol show block $block|grep MidPlanes|cut -f 2 -d =

|cut -f 1 -d ’ ’‘

9

10 case $midplanes in

11 "bp[000 x001]")

12 # full system

13 seq 0 31

14 ;;

15 "bp000")

16 # one midplane

17 seq 0 15

18 ;;

19 "bp001")

20 # one midplane

21 seq 16 31

22 ;;

23 "bp000"*)

24 # some fractional part of the first midplane

25

26 # translate bp000 [0 -16] into 0-16

27 # or bp000 [0] to 0

28 sub=‘echo $midplanes|sed "s/bp000 \[//"|sed "s/\]//"‘

29

30 # note: end may be null , this is okay

31 start=‘echo $sub|cut -f 1 -d -‘
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32 end=‘echo $sub|cut -f 2 -d -‘

33

34 seq $start $end

35 ;;

36 esac | awk ’BEGIN{FS=" "}{ print "ionode" $1 * 2}’

37

38 # the awk statement above doubles the node names;

39 # the SUR BG/L only has every -other ionode active

40 # so the bp000 block has ionode0 ,2,4,...,28,30

41 # (and no odd -numbered ionodes are active)
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try-to-assign-nodes.sh

1 #!/bin/bash

2

3 # try to assign RSA nodes to a job

4 job=$1

5

6 source global.sh

7

8 JOB_DIR=$STATE_DIR/job/$job

9

10 # if job_nodes < proportion , then we can ’t assign an entire RSA

node , so skip

11 JOB_NODES=‘squeue -h -j $job -o "%D"‘

12 if [[ $JOB_NODES -lt $PROPORTION ]]; then

13 echo ‘date +%s‘ "job $job too small , marking ineligible"

14 echo "INELIGIBLE" > $JOB_DIR/rsa -state

15 exit

16 fi

17

18 # look for RSA_DATA_IN and _OUT settings

19 ./parse -job -options.sh $job

20

21 # if DATA_IN and DATA_OUT are not set , set INELIGIBLE

22 JOB_STATE=‘cat $JOB_DIR/job -state ‘

23 if [[ ( ( ! -f $JOB_DIR/rsa -data -in ) && ( ! -f $JOB_DIR/rsa -data -

out ) )

24 || ( ( ! -f $JOB_DIR/rsa -data -out ) && $JOB_STATE == "RUNNING" )

]]; then

25 echo ‘date +%s‘ "job $job does not have RSA variables set ,

marking ineligible"

26 echo "INELIGIBLE" > $JOB_DIR/rsa -state

27 exit

28 fi

29
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30 # ensure there are sufficient free RSA nodes for this job; if not

skip over and try again later

31 RSA_NODES=‘echo $(( $JOB_NODES / $PROPORTION ))‘

32 FREE_NODES=‘wc -l $STATE_DIR/rsa -node/free|cut -f 1 -d ’ ’‘

33 if [[ $FREE_NODES -lt $RSA_NODES ]] ; then

34 echo ‘date +%s‘ "insufficient free RSA nodes for job $job , have

$FREE_NODES need $RSA_NODES"

35 exit

36 fi

37

38 mkdir $JOB_DIR/ramdisk

39

40 head -n $RSA_NODES $STATE_DIR/rsa -node/free > $JOB_DIR/rsa -nodes

41 tail -n +$(( $RSA_NODES +1)) /tmp/rsa -state/rsa -node/free > /tmp/rsa -

state/rsa -node/free2

42 mv /tmp/rsa -state/rsa -node/free2 /tmp/rsa -state/rsa -node/free

43

44 echo ‘date +%s‘ "assigning $RSA_NODES rsa -nodes to job $job"

45

46 ./rsa -config -gen.sh $job

47

48 echo "ASSIGNED" > $JOB_DIR/rsa -state
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rsa-config-gen.sh

1 #!/bin/bash

2

3 . global.sh

4

5 job=$1

6

7 # generate a fresh configuration file for the ramdisk

8

9 PVFSGENCONFIG =/gpfs/gpfs0/home/wickbt/pvfs -for -levi/bin/pvfs2 -

genconfig

10

11 rsa_nodes=‘cat $STATE_DIR/job/$job/rsa -nodes | awk ’BEGIN{ORS=","}{

print $1}’‘

12

13 PVFSCONF=$STATE_DIR/job/$job/pvfs -$job.conf

14

15 $PVFSGENCONFIG --quiet --protocol tcp --fsname ramdisk$job --

ioservers $rsa_nodes --metaservers $rsa_nodes --storage /ramdisk

$PVFSCONF
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parse-job-options.sh

1 #!/bin/bash

2

3 # parse job script file for RSA_DATA_IN and _OUT options

4 # if set , verify directories exist and set appropriate job

variables

5

6 source global.sh

7

8 job=$1

9

10 JOB_DIR=$STATE_DIR/job/$job

11

12 JOB_SCRIPT=‘scontrol show job $job | grep Command | cut -f 2- -d =‘

13

14 if [ -e "$JOB_SCRIPT" ]; then

15 data_in=‘grep ^#RSA_DATA_IN $JOB_SCRIPT|cut -f 2- -d =‘

16 data_out=‘grep ^#RSA_DATA_OUT $JOB_SCRIPT|cut -f 2- -d =‘

17 stage_in=‘grep ^#RSA_STAGE_IN $JOB_SCRIPT|cut -f 2- -d =‘

18 stage_out=‘grep ^#RSA_STAGE_OUT $JOB_SCRIPT|cut -f 2- -d =‘

19 delay=‘grep ^#RSA_DELAY $JOB_SCRIPT|cut -f 2 -d =‘

20 user=‘scontrol show job $job|grep UserId|awk ’{print $1}’|cut -f

2 -d =|cut -f 1 -d ’(’‘

21

22 echo $user > $JOB_DIR/user

23

24 if [[ -n "$data_in" && -d "$data_in" ]]; then

25 echo $data_in > $JOB_DIR/rsa -data -in

26 fi

27

28 if [[ -n "$data_out" && -d "$data_out" ]]; then

29 echo $data_out > $JOB_DIR/rsa -data -out

30 fi

31
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32 if [[ -n "$stage_in" && -x "$stage_in" ]]; then

33 echo $stage_in > $JOB_DIR/rsa -stage -in

34 fi

35

36 if [[ -n "$stage_out" && -x "$stage_out" ]]; then

37 echo $stage_out > $JOB_DIR/rsa -stage -out

38 fi

39

40 if [[ -n "$delay" ]]; then

41 echo $delay > $JOB_DIR/rsa -delay

42 else

43 echo $DEFAULT_DELAY > $JOB_DIR/rsa -delay

44 fi

45 fi
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prepare-machine.sh

1 #!/bin/bash

2

3 source global.sh

4

5 if [ -z "$STATE_DIR" ]; then

6 echo "no STATE_DIR set , aborting"

7 exit -1

8 fi

9 rm -rf $STATE_DIR

10

11 mkdir -p $STATE_DIR/job

12 mkdir -p $STATE_DIR/logs

13 mkdir -p $STATE_DIR/rsa -node

14

15 rsa_nodes="node [1 -16]"

16 scontrol show hostnames $rsa_nodes > $STATE_DIR/rsa -node/free
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Example RSA Scheduler Log

Example RSA Scheduler log file, showing a series of jobs running through the com-

pute system. Timestamps are in seconds (Unix epoch time).

1 1320009608 job 1679 does not have RSA variables set , marking

ineligible

2 1320009759 assigning 1 rsa -nodes to job 1716

3 1320009759 constructing RSA block for job 1716

4 1320009771 done constructing RSA block for job 1716

5 1320010272 staging data out for job 1716

6 1320010273 finished staging data out for job 1716

7 1320010287 destroying RSA block for job 1716

8 1320010289 finished destroying RSA block for job 1716

9 1320010378 assigning 1 rsa -nodes to job 1717

10 1320010378 constructing RSA block for job 1717

11 1320010390 done constructing RSA block for job 1717

12 1320010499 assigning 1 rsa -nodes to job 1718

13 1320010499 constructing RSA block for job 1718

14 1320010511 done constructing RSA block for job 1718

15 1320010514 staging data out for job 1717

16 1320010515 finished staging data out for job 1717

17 1320010529 destroying RSA block for job 1717

18 1320010531 finished destroying RSA block for job 1717

19 1320010590 job 1719 does not have RSA variables set , marking

ineligible

20 1320010620 job 1719 has been demoted

21 1320010620 removing state files for job 1719 due to demotion/

destruction

22 1320010650 staging data out for job 1718

23 1320010651 finished staging data out for job 1718

24 1320010665 destroying RSA block for job 1718

25 1320010667 finished destroying RSA block for job 1718

26 1320010711 job 1722 does not have RSA variables set , marking

ineligible
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27 1320010726 job 1722 has been demoted

28 1320010726 removing state files for job 1722 due to demotion/

destruction

29 1320011480 assigning 8 rsa -nodes to job 1725

30 1320011481 constructing RSA block for job 1725

31 1320011503 done constructing RSA block for job 1725

32 1320011632 staging data out for job 1725

33 1320011845 finished staging data out for job 1725

34 1320011859 destroying RSA block for job 1725

35 1320011869 finished destroying RSA block for job 1725

36 1320012059 assigning 8 rsa -nodes to job 1726

37 1320012059 constructing RSA block for job 1726

38 1320012081 done constructing RSA block for job 1726

39 1320012210 staging data out for job 1726

40 1320012389 finished staging data out for job 1726

41 1320012391 destroying RSA block for job 1726

42 1320012401 finished destroying RSA block for job 1726

43 1320012573 assigning 8 rsa -nodes to job 1727

44 1320012573 constructing RSA block for job 1727

45 1320012595 done constructing RSA block for job 1727

46 1320012724 staging data out for job 1727

47 1320012902 finished staging data out for job 1727

48 1320012905 destroying RSA block for job 1727

49 1320012914 finished destroying RSA block for job 1727
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Example SLURM Job Script for RSA

An example SLURM job file used to launch the “mpi-matrix” code used for testing.

This specific version is shown making use of the RSA with custom stage-in and

stage-out scripts.

1 #!/bin/bash

2

3 # set stage -in data directory:

4 #RSA_DATA_IN =/gpfs/gpfs0/home/wickbt/test8/input

5 # set custom stage -in script:

6 #RSA_STAGE_IN =/gpfs/gpfs0/home/wickbt/stage -in.sh

7

8 # set stage -out directory:

9 #RSA_DATA_OUT =/gpfs/gpfs0/home/wickbt/test8/results

10 # custom stage -out script

11 #RSA_STAGE_OUT =/gpfs/gpfs0/home/wickbt/stage -out.sh

12

13 # run in virtualnode mode

14 # matrix is 16384 elements x 16384 elements - 2GB in size

15 BGLMPI_MAPPING=TXYZ mpirun -mode VN -cwd ‘pwd ‘ ./mpi -matrix 16384

Example custom stage-in script.

1 #!/bin/bash

2 # $1 is the RAMDISK directory , $2 is RSA_DATA_IN directory

3

4 # un-tar the data

5 tar xvf $2/input.tar $1

Example custom stage-out script.

1 #!/bin/bash

2 # $1 is the RAMDISK directory , $2 is RSA_DATA_OUT directory

3

4 # tar up the data

5 tar cvf $2/result.tar $1
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